목록R (23)
Stats & AI tech blog - '일단 시도함'
1. rpart (Recursive Partitioning and Regression Trees) : CART 알고리즘을 사용하여 기본적인 결정 트리를 구현library(rpart)library(rpart.plot)rpartmod 2. party and partykit : 조건부 추론 트리 (Conditional Inference Trees) 를 제공 library(party) partymod 3. C50 : C5.0 알고리즘을 사용하여 결정트리와 부스팅 모델을 제공 library(C50) c50mod 4. tree : 단순하고 기본적인 결정 트리 구현 library(tree) treemod 5. CHAID : CHAID 알고리즘으로 트리 구현install.packages("CHAI..
Kappa 상관계수에 대한 개념 설명은 이전 포스팅 참고.2024.01.11 - [Data Analysis/Statistics] - [통계] Cohen's Kappa (카파 상관계수) [통계] Cohen's Kappa (카파 상관계수)Cohen's Kappa (카파 상관계수) 1) 카파 상관계수란? 범주형 변수 간의 일치도를 측정하는 통계량이다. 예를 들어 n명의 환자에 대한 검사 방법 X와 Y의 결과가 있을 때, 두 검사 방법의 일치도가 어떠meowstudylog.tistory.com 이번 포스팅에서는 R에서 Kappa 상관계수를 통한 일치도를 확인하는 방법에 대해 알아보겠다. 예제)분석 목적 : 2개의 진단 법 간의 일치도를 확인하고자 한다.사용 데이터 : 순서 척도로 이루어진 두 개의 범주형 변수>..
데이터 집계 및 피벗 # count Patients a % group_by(age_group2, year) %>% summarise(n_patient = n()) # pivot wider b % dcast(year ~ ..., value.var = 'n_patient') patient_id year age_group2 1 0005969 2014 61-75 2 0010250 2019 >=76 3 0013541 2011 >=76 4 0013600 2011 46-60 5 0024285 2016 46-60 6 0025533 2018 61-75 > head(a)# A tibb..
1. 다중대응분석(MCA)이란? 다변량 범주형 자료의 탐색적 분석에 이용되는 차원 축소 기법이다.대응분석(CA)의 확장이며, 범주형 데이터에 대한 주성분분석(PCA)으로 이해할 수 있다. 연속형 자료의 차원 축소 기법인 PCA에서는 공분산을 통해 변수 간의 관계성 파악한다. 관계가 밀접한 변수들의 선형조합으로 정보량이 많은 변수(주성분)를 추출한다. 범주형 자료에서는 공분산을 사용할 수 없기 때문에 범주형 변수의 관계성 지표인 카이제곱 검정통계량을 사용한다. 두 변수의 관계가 밀접할 수록 카이제곱 검정통계량은 커지게 된다. 변수 간 카이제곱 검정통계량으로 만든 행렬을 분해(Decomposition)하여 요인을 찾아내는 것이 대응분석(CA)이고, CA를 여러 변수로 확장한 것이 다중대응분석(MCA)이다. ..
이전 포스팅에서 로지스틱 회귀 분석 개념에 대해 알아보았다.2023.11.29 - [Machine Learning/Regression] - [머신러닝] Logistic Regression Analysis (로지스틱 회귀분석) 로지스틱 회귀에서는 어떤 사건의 발생을 직접 예측하는 것이 아니라, 사건이 발생할 확률 (0~1) 을 예측하였는데,이번 포스팅에서는 R에서 이 확률 곡선을 그리는 방법에 대해 알아보겠다. 1. Probability Curve of each group 아래는 3개 그룹에서 CM_sIgE의 투여량에 따라 food 알러지가 발생할 확률을 그래프로 나타내는 코드이다.for(i in 1:5){ x
이전 포스팅에서 진단 모델 성능 평가 지표의 개념과 R코드를 알아보았다.2023.12.07 - [Statistics] - [통계] Diagnostic Test (진단 테스트) : Sensitivity, Specificity, Accuracy (민감도, 특이도, 정확도)2023.12.08 - [Programming/R] - [R] Diagnostic Test (진단 테스트) : Sensitivity, Specificity, Accuracy (민감도, 특이도, 정확도) 경우에 따라 두 개의 진단 도구 (ex. 기존 진단 도구 vs 신규 진단 도구)의 결과를 비교해야할 때가 있는데, 이번 포스팅에서는 각 지표를 비교하는 방법에 대해 알아보겠다. 동일한 환자를 대상으로 진단 방법 A, B 시행한 데이터에서 두 ..
이전 포스팅에서 진단 모델의 성능 평가 지표 개념에 대해 알아보았다.2023.12.07 - [Data Analysis/Statistics] - Diagnostic Test (진단 테스트) : Sensitivity, Specificity, Accuracy (민감도, 특이도, 정확도) [통계] Diagnostic Test (진단 테스트) : Sensitivity, Specificity, Accuracy (민감도, 특이도, 정확도)Diagnostic Testing (진단 테스트) 진단 모델의 성능을 평가하기 위한 테스트로 진단 모델이 실제 값을 얼마나 잘 예측하는지 평가하는데 사용된다. 1. Confusion Matrix: 예측 값과 실제 값을 비교하기meowstudylog.tistory.com 오늘 포스..
1. 성향점수매칭(PSM) 이란?무작위 대조군 연구(RCT)가 불가능한 관찰 연구에서 실험군과 대조군 그룹 간 비교를 위해 사용되는 통계적 기법이다.표본 추출 과정에서 적절한 랜덤화가 이루어지지 않았을 경우에는 특정 공변량(covariate)에 의해 통계 분석 결과가 왜곡되는 선택 편향(selection bias)이 발생할 수 있다. 이런 공변량들은 실험군과 대조군 사이의 결과 차이를 규명하는데 혼란 변수로 작용하게 된다. PSM은 주요 관심인 독립변수가 종속변수에 미치는 영향을 평가하고자 할 때, 그 관계에 영향을 미칠 수 있는 공변량의 편향(bias)를 줄이고자 사용되는 통계기법이다. 2. PSM 절차1) 성향 점수 계산처치 변수를 종속변수로, 혼란 변수을 독립변수로 두고 로지스틱 회귀 분석 등의 ..
코드 위아래로 이동 : Alt+↑ / Alt+↓코드 자동 추천 : Tab or Ctrl + Space 문장 자동완성 : Tab스크립트 처음부터 현재 줄까지 실행 : Ctrl + Alt + B현재 줄부터 스크립트 끝까지 실행 : Ctrl + Alt + E스크립트 전체 실행 : Ctrl + Alt + R들여쓰기 자동 맞춤 : Ctrl+I or Ctrl+Shift+A주석 처리 (#) : Ctrl + Shift + C체인연산자 (%>%) : Ctrl + Shift + M화살표 (현재 줄 선택 : Ctrl + Shift + L현재 줄 맨앞으로 이동 : Home현재 줄 끝으로 이동 : End스크립트 맨앞으로 이동 : Ctrl + Home스크립트 끝으로 이동 : Ctrl + End
1. apply행 단위 또는 열 단위 연산을 가능하게 한다. input 데이터로 모두 같은 타입의 변수형을 가진 배열(Array), 매트릭스(Matrix), 데이터 프레임(Dataframe)이 가능하다.연산결과는 매트릭스 또는 벡터 형태로 출력된다. * 행 단위, 열 단위 평균 구하기# calculate row meanapply(data, 1, mean)# calculate column meanapply(data, 2, mean) 2. sapplyfor문을 대체하여 주로 쓰이며, 연산 결과는 벡터 또는 행렬 형태로 출력된다. sapply( , simplify = F) 인 경우 또는 input 데이터가 길이가 다른 리스트인 경우, lapply( ) 와 동일하게 리스트 형태로 출력된다. * 특정 열의 데이..