Recent Posts
목록Statistics & AI/Dimension Reduction (1)
Stats & AI tech blog - '일단 시도함'
[ML/DL] MCA, Multiple Correspondence Analysis (다중 대응 분석)
1. 다중대응분석(MCA)이란? 다변량 범주형 자료의 탐색적 분석에 이용되는 차원 축소 기법이다.대응분석(CA)의 확장이며, 범주형 데이터에 대한 주성분분석(PCA)으로 이해할 수 있다. 연속형 자료의 차원 축소 기법인 PCA에서는 공분산을 통해 변수 간의 관계성 파악한다. 관계가 밀접한 변수들의 선형조합으로 정보량이 많은 변수(주성분)를 추출한다. 범주형 자료에서는 공분산을 사용할 수 없기 때문에 범주형 변수의 관계성 지표인 카이제곱 검정통계량을 사용한다. 두 변수의 관계가 밀접할 수록 카이제곱 검정통계량은 커지게 된다. 변수 간 카이제곱 검정통계량으로 만든 행렬을 분해(Decomposition)하여 요인을 찾아내는 것이 대응분석(CA)이고, CA를 여러 변수로 확장한 것이 다중대응분석(MCA)이다. ..
Statistics & AI/Dimension Reduction
2023. 12. 27. 16:38