목록Data Science/R (3)
zimslog

이번 포스팅에서는 R의 caret 패키지로 쉽게 모델을 학습 & 튜닝하는 방법에 대해 알아보겠다. 아래는 모델을 튜닝하기 위해 먼저 고려해야할 요소이다.어떤 모델을 다룰지 선택 ex) SVM모델을 튜닝하기 위해서 어떤 parameters를 사용할 것인지 선택 ex) C, kernel,,학습에 사용할 데이터를 어떻게 resampling 할지 선택 ex) 10-fold Cross Validation 예시로 SVM 분류 모델을 학습 & 튜닝하는 과정에 대해 알아보겠다. 1. Resampling 방법 지정 (trainControl)먼저 caret 패키지의 trainControl 함수를 통해 Resampling 방식을 지정한다.아래 코드는 K-fold Cross Validation을 여러번 반복해서 샘플링하는 ..

이번 포스팅에서는 R에서 K-Means Clustering을 수행하는 방법에 대해 알아보겠다. K-Means Clustering에 대한 개념 설명은 아래 게시글을 참고하면 된다.2024.02.26 - [Machine Learning/Clustering] - [머신러닝] K-Means Clustering [머신러닝] K-Means ClusteringK-Means Clustering 1) K-Means 알고리즘이란? 비지도학습에 속하는 머신러닝 기법으로 데이터를 유사한 특성을 가진 K개의 군집(Cluster)으로 묶는 알고리즘이다. K개의 점과의 거리를 기반으로 구현된다meowstudylog.tistory.com K-Means Clustering은 아래 절차대로 수행하면 된다.데이터 분할 및 전처리군집 수..
1. rpart (Recursive Partitioning and Regression Trees) : CART 알고리즘을 사용하여 기본적인 결정 트리를 구현library(rpart)library(rpart.plot)rpartmod 2. party and partykit : 조건부 추론 트리 (Conditional Inference Trees) 를 제공 library(party) partymod 3. C50 : C5.0 알고리즘을 사용하여 결정트리와 부스팅 모델을 제공 library(C50) c50mod 4. tree : 단순하고 기본적인 결정 트리 구현 library(tree) treemod 5. CHAID : CHAID 알고리즘으로 트리 구현install.packages("CHAI..